## MAXIMUM AND MINIMUM VALUES

Math 130 - Essentials of Calculus

31 March 2021

# **DEFINITIONS - REVIEW**

#### **DEFINITION**

Let c be a number in the domain of a function f. Then f(c) is the

• absolute maximum value of f on the domain if  $f(c) \ge f(x)$  for all x in the domain.

#### **DEFINITION**

Let c be a number in the domain of a function f. Then f(c) is the

- absolute maximum value of f on the domain if  $f(c) \ge f(x)$  for all x in the domain.
- absolute minimum value of f on the domain if  $f(c) \le f(x)$  for all x in the domain.

#### **DEFINITION**

Let c be a number in the domain of a function f. Then f(c) is the

- absolute maximum value of f on the domain if  $f(c) \ge f(x)$  for all x in the domain.
- absolute minimum value of f on the domain if  $f(c) \le f(x)$  for all x in the domain.

These values are also called the extreme values of f.

#### **DEFINITION**

Let c be a number in the domain of a function f. Then f(c) is the

- absolute maximum value of f on the domain if  $f(c) \ge f(x)$  for all x in the domain.
- absolute minimum value of f on the domain if  $f(c) \le f(x)$  for all x in the domain.

These values are also called the extreme values of f.

A function often has values that behave like maximum and minimum values if you only look at nearby input values. These are called local extrema.

#### **DEFINITION**

The number f(c) is a

• local maximum value of f if  $f(c) \ge f(x)$  when x is near c.

#### **DEFINITION**

Let c be a number in the domain of a function f. Then f(c) is the

- absolute maximum value of f on the domain if  $f(c) \ge f(x)$  for all x in the domain.
- absolute minimum value of f on the domain if  $f(c) \le f(x)$  for all x in the domain.

These values are also called the extreme values of f.

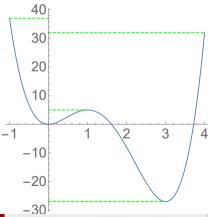
A function often has values that behave like maximum and minimum values if you only look at nearby input values. These are called local extrema.

#### **DEFINITION**

The number f(c) is a

- local maximum value of f if  $f(c) \ge f(x)$  when x is near c.
- local minimum value of f if  $f(c) \le f(x)$  when x is near c.

Consider the function  $f(x) = 3x^4 - 16x^3 + 18x^2$  on the domain  $-1 \le x \le 4$ . Where are the absolute maximum and absolute minimum values, and what are they? Are there any local minimum and local maximum values?



#### Extrema of a Function

Whether or not a function has absolute/local extrema depends on the function AND the domain you look at it on.

Whether or not a function has absolute/local extrema depends on the function AND the domain you look at it on.

#### EXAMPLE

**①** Considered on the domain  $(-\infty, \infty)$ ,  $f(x) = x^2$  has an absolute minimum, but nothing else.

Whether or not a function has absolute/local extrema depends on the function AND the domain you look at it on.

#### EXAMPLE

- Considered on the domain  $(-\infty, \infty)$ ,  $f(x) = x^2$  has an absolute minimum, but nothing else.
- ② Considered on the domain  $(-\infty, \infty)$ ,  $f(x) = x^3$  has no extrema at all!

Whether or not a function has absolute/local extrema depends on the function AND the domain you look at it on.

#### EXAMPLE

- Considered on the domain  $(-\infty, \infty)$ ,  $f(x) = x^2$  has an absolute minimum, but nothing else.
- ② Considered on the domain  $(-\infty, \infty)$ ,  $f(x) = x^3$  has no extrema at all!

It turns out that if you consider a continuous function on a closed interval, of the form [a, b], you're guaranteed an absolute maximum and minimum.

## THEOREM (THE EXTREME VALUE THEOREM)

If f is continuous on a closed interval, then it always attains an absolute maximum value and an absolute minimum value on that interval.

#### LOCATING EXTREME VALUES

Observing some of the pictures we've had so far, the following theorem is apparent:

THEOREM (FERMAT'S THEOREM)

If f has a local maximum or minimum at c, and if f'(c) exists, then f'(c) = 0.

#### LOCATING EXTREME VALUES

Observing some of the pictures we've had so far, the following theorem is apparent:

THEOREM (FERMAT'S THEOREM)

If f has a local maximum or minimum at c, and if f'(c) exists, then f'(c) = 0.

It's possible that a function could have a local extrema at a place where  $f'(c) \neq 0$ , for example, consider f(x) = |x|.

5/8

## LOCATING EXTREME VALUES

Observing some of the pictures we've had so far, the following theorem is apparent:

## THEOREM (FERMAT'S THEOREM)

If f has a local maximum or minimum at c, and if f'(c) exists, then f'(c) = 0.

It's possible that a function could have a local extrema at a place where  $f'(c) \neq 0$ , for example, consider f(x) = |x|. It turns out that what we're really looking for are *critical numbers*.

## DEFINITION (CRITICAL NUMBER)

A critical number of a function f is a number c in the domain of f such that either f'(c) = 0 or f'(c) does not exist.

## Critical Numbers - Examples

#### EXAMPLE

Find the critical numbers of the following functions

$$A(t) = t^3 - 6t^2 - 36t + 7$$



## Critical Numbers - Examples

#### EXAMPLE

Find the critical numbers of the following functions

$$A(t) = t^3 - 6t^2 - 36t + 7$$

$$f(x) = \sqrt[3]{x}$$



# CRITICAL NUMBERS - EXAMPLES

#### EXAMPLE

Find the critical numbers of the following functions

$$A(t) = t^3 - 6t^2 - 36t + 7$$

**2** 
$$f(x) = \sqrt[3]{x}$$

$$g(x) = x^3 + 3x^2 - 24$$



6/8

#### THE CLOSED INTERVAL METHOD

#### THEOREM

To find the absolute maximum and minimum values of a continuous function f on a closed interval [a, b]:

- Find the critical numbers of f in the interval (a, b) and compute the values of f at these numbers.
- Find the values of f at the endpoints of the interval.
- The largest of the output values from steps 1 and 2 is the absolute maximum value; the smallest of these values is the absolute minimum value.

### FINDING EXTREMA

#### EXAMPLE

Find the absolute maximum and absolute minimum values of f on the given interval.

$$f(x) = x^3 - 3x + 1, [0,3]$$

$$f(x) = x^3 - 6x^2 + 9x + 2, [-1, 4]$$

